EconPapers    
Economics at your fingertips  
 

Least‐Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems

Weili Xiong, Wei Fan and Rui Ding

Journal of Applied Mathematics, 2012, vol. 2012, issue 1

Abstract: This paper studies least‐squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive (IN‐CAR) model and the input nonlinear controlled autoregressive autoregressive moving average (IN‐CARARMA) model. The basic idea is to obtain linear‐in‐parameters models by overparameterizing such nonlinear systems and to use the least‐squares algorithm to estimate the unknown parameter vectors. It is proved that the parameter estimates consistently converge to their true values under the persistent excitation condition. A simulation example is provided.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2012/684074

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:684074

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2012:y:2012:i:1:n:684074