Effects of Regional Magnetic Field on Rotating MHD Flow Field of Unity Magnetic Prandtl Number
Sheng Lun Hung and
Jik Chang Leong
Journal of Applied Mathematics, 2012, vol. 2012, issue 1
Abstract:
This work numerically studies the flow pattern of a magnetic fluid filled within an annulus whose inner cylinder is moving at a constant rotational speed, while the outer cylinder is stationary but under the influence of a nonuniform external magnetic field. The magnetic field consists of four basic configurations, that is, completely circular, semicircular, quarter circular, and alternately quarter circular. The strength of the external magnetic field is characterized using a reference Hartmann number. As the reference Hartmann number increases, the fluid elements need to overcome greater resistance to enter the region with magnetic field. Hence, there always exists an apparent recirculation cell within the region without externally applied magnetic field. The strength and size of the recirculation cell depend on the reference Hartmann number, the number and size of the discrete regions without external magnetic field. Only the shear stress on the moving cylinder always increases in magnitude with the reference Hartmann number and the span of the single external magnetic field region. Splitting and separating the external magnetic field may increase the magnitude of the shear stress on the moving inner cylinder but decrease that on the stationary outer cylinder. If the magnitude of the shear stress on the outer cylinder reduces beyond zero, a shear stress in the opposite sense will increase in magnitude with Hartmann number.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2012/804105
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:804105
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().