EconPapers    
Economics at your fingertips  
 

Stability and Probability 1 Convergence for Queueing Networks via Lyapunov Optimization

Michael J. Neely

Journal of Applied Mathematics, 2012, vol. 2012, issue 1

Abstract: Lyapunov drift is a powerful tool for optimizing stochastic queueing networks subject to stability. However, the most convenient drift conditions often provide results in terms of a time average expectation, rather than a pure time average. This paper provides an extended drift‐plus‐penalty result that ensures stability with desired time averages with probability 1. The analysis uses the law of large numbers for martingale differences. This is applied to quadratic and subquadratic Lyapunov methods for minimizing the time average of a network penalty function subject to stability and to additional time average constraints. Similar to known results for time average expectations, this paper shows that pure time average penalties can be pushed arbitrarily close to optimality, with a corresponding tradeoff in average queue size. Further, in the special case of quadratic Lyapunov functions, the basic drift condition is shown to imply all major forms of queue stability.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2012/831909

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:831909

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2012:y:2012:i:1:n:831909