EconPapers    
Economics at your fingertips  
 

Personal Identification Based on Vectorcardiogram Derived from Limb Leads Electrocardiogram

Jongshill Lee, Youngjoon Chee and Inyoung Kim

Journal of Applied Mathematics, 2012, vol. 2012, issue 1

Abstract: We propose a new method for personal identification using the derived vectorcardiogram (dVCG), which is derived from the limb leads electrocardiogram (ECG). The dVCG was calculated from the standard limb leads ECG using the precalculated inverse transform matrix. Twenty‐one features were extracted from the dVCG, and some or all of these 21 features were used in support vector machine (SVM) learning and in tests. The classification accuracy was 99.53%, which is similar to the previous dVCG analysis using the standard 12‐lead ECG. Our experimental results show that it is possible to identify a person by features extracted from a dVCG derived from limb leads only. Hence, only three electrodes have to be attached to the person to be identified, which can reduce the effort required to connect electrodes and calculate the dVCG.

Date: 2012
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2012/904905

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:904905

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2012:y:2012:i:1:n:904905