The Hamiltonian System Method for the Stress Analysis in Axisymmetric Problems of Viscoelastic Solids
W. X. Zhang,
Y. Bai and
F. Yuan
Journal of Applied Mathematics, 2012, vol. 2012, issue 1
Abstract:
With the use of the Laplace integral transformation and state space formalism, the classical axial symmetric quasistatic problem of viscoelastic solids is discussed. By employing the method of separation of variables, the governing equations under Hamiltonian system are established, and hence, general solutions including the zero eigensolutions and nonzero eigensolutions are obtained analytically. Due to the completeness property of the general solutions, their linear combinations can describe various boundary conditions. Simply by applying the adjoint relationships of the symplectic orthogonality, the eigensolution expansion method for boundary condition problems is given. In the numerical examples, stress distributions of a circular cylinder under the end and lateral boundary conditions are obtained. The results exhibit that stress concentrations appear due to the displacement constraints, and that the effects are seriously confined near the constraints, decreasing rapidly with the distance from the boundary.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2012/945238
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2012:y:2012:i:1:n:945238
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().