A Hybrid Estimation of Distribution Algorithm and Nelder‐Mead Simplex Method for Solving a Class of Nonlinear Bilevel Programming Problems
Aihong Ren,
Yuping Wang and
Fei Jia
Journal of Applied Mathematics, 2013, vol. 2013, issue 1
Abstract:
We propose a hybrid algorithm based on estimation of distribution algorithm (EDA) and Nelder‐Mead simplex method (NM) to solve a class of nonlinear bilevel programming problems where the follower’s problem is linear with respect to the lower level variable. The bilevel programming is an NP‐hard optimization problem, for which EDA‐NM is applied as a new tool aiming at obtaining global optimal solutions of such a problem. In fact, EDA‐NM is very easy to be implementedsince it does not require gradients information. Moreover, the hybrid algorithm intends to produce faster and more accurate convergence. In the proposed approach, for fixed upper level variable, we make use of the optimality conditions of linear programming to deal with the follower’s problem and obtain its optimal solution. Further, the leader’s objective function is taken as the fitness function. Based on these schemes, the hybrid algorithm is designed by combining EDA with NM. To verify the performance of EDA‐NM, simulations on some test problems are made, and the results demonstrate that the proposed algorithm has a better performance than the compared algorithms. Finally, the proposed approach is used to solve a practical example about pollution charges problem.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2013/378568
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2013:y:2013:i:1:n:378568
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().