EconPapers    
Economics at your fingertips  
 

Higher‐Order Hermite‐Fejér Interpolation for Stieltjes Polynomials

Hee Sun Jung and Ryozi Sakai

Journal of Applied Mathematics, 2013, vol. 2013, issue 1

Abstract: Let wλ(x): = (1 − x2) λ−1/2 and Pλ,n be the ultraspherical polynomials with respect to wλ(x). Then, we denote the Stieltjes polynomials Eλ,n+1 with respect to wλ(x) satisfying ∫-11 wλxPλ,nxEλ,n+1xxmdx ( = 0, 0 ≤ m

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2013/542653

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2013:y:2013:i:1:n:542653

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2013:y:2013:i:1:n:542653