EconPapers    
Economics at your fingertips  
 

Parallel RFSAI‐BFGS Preconditioners for Large Symmetric Eigenproblems

L. Bergamaschi and A. Martínez

Journal of Applied Mathematics, 2013, vol. 2013, issue 1

Abstract: We propose a parallel preconditioner for the Newton method in the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners starting from an enhanced approximate inverse RFSAI (Bergamaschi and Martínez, 2012) and enriched by a BFGS‐like update formula is proposed to accelerate the preconditioned conjugate gradient solution of the linearized Newton system to solve Au = q(u)u, q(u) being the Rayleigh quotient. In a previous work (Bergamaschi and Martínez, 2013) the sequence of preconditioned Jacobians is proven to remain close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to 1.5 million unknowns account for the efficiency and the scalability of the proposed low rank update of the RFSAI preconditioner. The overall RFSAI‐BFGS preconditioned Newton algorithm has shown comparable efficiencies with a well‐established eigenvalue solver on all the test problems.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2013/767042

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2013:y:2013:i:1:n:767042

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2013:y:2013:i:1:n:767042