EconPapers    
Economics at your fingertips  
 

Sensitivity Analysis of Wavelet Neural Network Model for Short‐Term Traffic Volume Prediction

Jinxing Shen and Wenquan Li

Journal of Applied Mathematics, 2013, vol. 2013, issue 1

Abstract: In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM) is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back‐propagation neural network (BPNN). The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short‐term traffic volume prediction.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2013/953548

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2013:y:2013:i:1:n:953548

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2013:y:2013:i:1:n:953548