EconPapers    
Economics at your fingertips  
 

An Exploration of the Triplet Periodicity in Nucleotide Sequences with a Mature Self‐Adaptive Spectral Rotation Approach

Bo Chen and Ping Ji

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: Previously, for predicting coding regions in nucleotide sequences, a self‐adaptive spectral rotation (SASR) method has been developed, based on a universal statistical feature of the coding regions, named triplet periodicity (TP). It outputs a random walk, that is, TP walk, in the complex plane for the query sequence. Each step in the walk is corresponding to a position in the sequence and generated from a long‐term statistic of the TP in the sequence. The coding regions (TP intensive) are then visually discriminated from the noncoding ones (without TP), in the TP walk. In this paper, the behaviors of the walks for random nucleotide sequences are further investigated qualitatively. A slightly leftward trend (a negative noise) in such walks is observed, which is not reported in the previous SASR literatures. An improved SASR, named the mature SASR, is proposed, in order to eliminate the noise and correct the TP walks. Furthermore, a potential sequence pattern opposite to the TP persistent pattern, that is, the TP antipersistent pattern, is explored. The applications of the algorithms on simulated datasets show their capabilities in detecting such a potential sequence pattern.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/176943

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:176943

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:176943