EconPapers    
Economics at your fingertips  
 

MRILDU: An Improvement to ILUT Based on Incomplete LDU Factorization and Dropping in Multiple Rows

Jian-Ping Wu and Huai-Fa Ma

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: We provide an improvement MRILDU to ILUT for general sparse linear systems in the paper. The improvement is based on the consideration that relatively large elements should be kept down as much as possible. To do so, two schemes are used. Firstly, incomplete LDU factorization is used instead of incomplete LU. Besides, multiple rows are computed at a time, and then dropping is applied to these rows to extract the relatively large elements in magnitude. Incomplete LDU is not only fairer when there are large differences between the elements of factors L and U, but also more natural for the latter dropping in multiple rows. And the dropping in multiple rows is more profitable, for there may be large differences between elements in different rows in each factor. The provided MRILDU is comparable to ILUT in storage requirement and computational complexity. And the experiments for spare linear systems from UF Sparse Matrix Collection, inertial constrained fusion simulation, numerical weather prediction, and concrete sample simulation show that it is more effective than ILUT in most cases and is not as sensitive as ILUT to the parameter p, the maximum number of nonzeros allowed in each row of a factor.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/467672

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:467672

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:467672