EconPapers    
Economics at your fingertips  
 

Dynamic Complexity of a Switched Host‐Parasitoid Model with Beverton‐Holt Growth Concerning Integrated Pest Management

Changcheng Xiang, Zhongyi Xiang and Yi Yang

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: The switched discrete host‐parasitoid model with Beverton‐Holt growth concerning integrated pest management has been proposed, and the switches are guided by the economic threshold (ET). The integrated pest management (IPM) tactics are applied to prevent the economic injury if the density of host population exceeds the ET, and the IPM tactics are called off once the density of host population descends below ET. To begin with, the regular and virtual equilibria of switched system has been discussed by two or three parameter‐bifurcation diagrams, which reveal the regions of different types of equilibria. Besides, numerical bifurcation analyses about inherent growth rates show that the switched discrete system may have complicated dynamics behavior including chaos and the coexistence of multiple attractors. Finally, numerical bifurcation analyses about killing rates indicate that the system comply with the Volterra principle, and initial values of both host and parasitoid populations affect the host outbreaks times.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/501423

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:501423

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:501423