EconPapers    
Economics at your fingertips  
 

Reliability Modeling and Evaluation of Electric Vehicle Motor by Using Fault Tree and Extended Stochastic Petri Nets

Bing Wang, Guangdong Tian, Yanping Liang and Tiangang Qiang

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: Performing reliability analysis of electric vehicle motor has an important impact on its safety. To do so, this paper proposes its reliability modeling and evaluation issues of electric vehicle motor by using fault tree (FT) and extended stochastic Petri nets (ESPN). Based on the concepts of FT and ESPN, an FT based ESPN model for reliability analysis is obtained. In addition, the reliability calculation method is introduced and this work designs a hybrid intelligent algorithm integrating stochastic simulation and NN, namely, NN based simulation algorithm, to solve it. Finally, taking an electric vehicle motor as an example, its reliability modeling and evaluation issues are analyzed. The results illustrate the proposed models and the effectiveness of proposed algorithms. Moreover, the results reported in this work could be useful for the designers of electric vehicle motor, particularly, in the process of redesigning the electric vehicle motor and scheduling its reliability growth plan.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/638013

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:638013

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:638013