Solving the Linear Integral Equations Based on Radial Basis Function Interpolation
Huaiqing Zhang,
Yu Chen and
Xin Nie
Journal of Applied Mathematics, 2014, vol. 2014, issue 1
Abstract:
The radial basis function (RBF) method, especially the multiquadric (MQ) function, was introduced in solving linear integral equations. The procedure of MQ method includes that the unknown function was firstly expressed in linear combination forms of RBFs, then the integral equation was transformed into collocation matrix of RBFs, and finally, solving the matrix equation and an approximation solution was obtained. Because of the superior interpolation performance of MQ, the method can acquire higher precision with fewer nodes and low computations which takes obvious advantages over thin plate splines (TPS) method. In implementation, two types of integration schemes as the Gauss quadrature formula and regional split technique were put forward. Numerical results showed that the MQ solution can achieve accuracy of 1E − 5. So, the MQ method is suitable and promising for integral equations.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2014/793582
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:793582
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().