EconPapers    
Economics at your fingertips  
 

Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression

Stephen M. Akandwanaho, Aderemi O. Adewumi and Ayodele A. Adebiyi

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP) tour and less computational time in nonstationary conditions.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/818529

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:818529

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:818529