Multigranulations Rough Set Method of Attribute Reduction in Information Systems Based on Evidence Theory
Minlun Yan
Journal of Applied Mathematics, 2014, vol. 2014, issue 1
Abstract:
Attribute reduction is one of the most important problems in rough set theory. However, from the granular computing point of view, the classical rough set theory is based on a single granulation. It is necessary to study the issue of attribute reduction based on multigranulations rough set. To acquire brief decision rules from information systems, this paper firstly investigates attribute reductions by combining the multigranulations rough set together with evidence theory. Concepts of belief and plausibility consistent set are proposed, and some important properties are addressed by the view of the optimistic and pessimistic multigranulations rough set. What is more, the multigranulations method of the belief and plausibility reductions is constructed in the paper. It is proved that a set is an optimistic (pessimistic) belief reduction if and only if it is an optimistic (pessimistic) lower approximation reduction, and a set is an optimistic (pessimistic) plausibility reduction if and only if it is an optimistic (pessimistic) upper approximation reduction.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2014/857186
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:857186
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().