EconPapers    
Economics at your fingertips  
 

A Kernel Based Neighborhood Discriminant Submanifold Learning for Pattern Classification

Xu Zhao

Journal of Applied Mathematics, 2014, vol. 2014, issue 1

Abstract: We propose a novel method, called Kernel Neighborhood Discriminant Analysis (KNDA), which can be regarded as a supervised kernel extension of Locality Preserving Projection (LPP). KNDA nonlinearly maps the original data into a kernel space in which two graphs are constructed to depict the within‐class submanifold and the between‐class submanifold. Then a criterion function which minimizes the quotient between the within‐class representation and the between‐class representation of the submanifolds is designed to separate each submanifold constructed by each class. The real contribution of this paper is that we bring and extend the submanifold based algorithm to a general model and by some derivation a simple result is given by which we can classify a given object to a predefined class effectively. Experiments on the MNIST Handwritten Digits database, the Binary Alphadigits database, the ORL face database, the Extended Yale Face Database B, and a downloaded documents dataset demonstrate the effectiveness and robustness of the proposed method.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2014/950349

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2014:y:2014:i:1:n:950349

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2014:y:2014:i:1:n:950349