Analysis of a Heroin Epidemic Model with Saturated Treatment Function
Isaac Mwangi Wangari and
Lewi Stone
Journal of Applied Mathematics, 2017, vol. 2017, issue 1
Abstract:
A mathematical model is developed that examines how heroin addiction spreads in society. The model is formulated to take into account the treatment of heroin users by incorporating a realistic functional form that “saturates” representing the limited availability of treatment. Bifurcation analysis reveals that the model has an intrinsic backward bifurcation whenever the saturation parameter is larger than a fixed threshold. We are particularly interested in studying the model’s global stability. In the absence of backward bifurcations, Lyapunov functions can often be found and used to prove global stability. However, in the presence of backward bifurcations, such Lyapunov functions may not exist or may be difficult to construct. We make use of the geometric approach to global stability to derive a condition that ensures that the system is globally asymptotically stable. Numerical simulations are also presented to give a more complete representation of the model dynamics. Sensitivity analysis performed by Latin hypercube sampling (LHS) suggests that the effective contact rate in the population, the relapse rate of heroin users undergoing treatment, and the extent of saturation of heroin users are mechanisms fuelling heroin epidemic proliferation.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2017/1953036
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2017:y:2017:i:1:n:1953036
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().