Sparse Optimization of Vibration Signal by ADMM
Song Wanqing
Journal of Applied Mathematics, 2017, vol. 2017, issue 1
Abstract:
In this paper, the alternating direction method of multipliers (ADMM) algorithm is applied to the compressed sensing theory to realize the sparse optimization of vibration signal. Solving the basis pursuit problem for minimizing the L1 norm minimization under the equality constraints, the sparse matrix obtained by the ADMM algorithm can be reconstructed by inverse sparse orthogonal matrix inversion. This paper analyzes common sparse orthogonal basis on the reconstruction results, that is, discrete Fourier orthogonal basis, discrete cosine orthogonal basis, and discrete wavelet orthogonal basis. In particular, we will show that, from the point of view of central tendency, the discrete cosine orthogonal basis is more suitable, for instance, at the vibration signal data because its error is close to zero. Moreover, using the discrete wavelet transform in signal reconstruction there still are some outliers but the error is unstable. We also use the time complex degree and validity, for the analysis of the advantages and disadvantages of the ADMM algorithm applied to sparse signal optimization. The advantage of this method is that these abnormal values are limited in the control range.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2017/4612853
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2017:y:2017:i:1:n:4612853
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().