EconPapers    
Economics at your fingertips  
 

A New Numerical Procedure for Vibration Analysis of Beam under Impulse and Multiharmonics Piezoelectric Actuators

Yassin Belkourchia and Lahcen Azrar

Journal of Applied Mathematics, 2020, vol. 2020, issue 1

Abstract: The dynamic behavior of structures with piezoelectric patches is governed by partial differential equations with strong singularities. To directly deal with these equations, well adapted numerical procedures are required. In this work, the differential quadrature method (DQM) combined with a regularization procedure for space and implicit scheme for time discretization is used. The DQM is a simple method that can be implemented with few grid points and can give results with a good accuracy. However, the DQM presents some difficulties when applied to partial differential equations involving strong singularities. This is due to the fact that the subsidiaries of the singular functions cannot be straightforwardly discretized by the DQM. A methodological approach based on the regularization procedure is used here to overcome this difficulty and the derivatives of the Dirac‐delta function are replaced by regularized smooth functions. Thanks to this regularization, the resulting differential equations can be directly discretized using the DQM. The efficiency and applicability of the proposed approach are demonstrated in the computation of the dynamic behavior of beams for various boundary conditions and excited by impulse and Multiharmonics piezoelectric actuators. The obtained numerical results are well compared to the developed analytical solution.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1155/2020/7391848

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2020:y:2020:i:1:n:7391848

Access Statistics for this article

More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jnljam:v:2020:y:2020:i:1:n:7391848