Effects of Slip and Inclined Magnetic Field on the Flow of Immiscible Fluids (Couple Stress Fluid and Jeffrey Fluid) in a Porous Channel
Punnamchandar Bitla and
Fekadu Yemataw Sitotaw
Journal of Applied Mathematics, 2022, vol. 2022, issue 1
Abstract:
In this paper, we study the flow of two immiscible fluids namely, couple stress fluid and Jeffrey fluid in a porous channel. Instead of the classical no‐slip conditions on the boundaries, we used slip boundary conditions, which are more realistic and meaningful. In addition, we used inclined magnetic field effects on the fluid flow. The couple stress fluid and Jeffrey fluid are flowing adjacent to each other in the region I and in the region II, respectively, of the horizontal porous channel. The nondimensionalized governing equations are solved analytically by using slip conditions at the lower and upper boundaries and interface conditions at the fluid‐fluid interface. The analytical expressions for the velocity components in both regions are obtained in closed form. The effects of slip parameter, Hartmann number, couple stress parameter, Jeffrey parameter, angle of inclination, and Darcy number on velocity components in both regions are investigated. In the absence of slip, couple stress parameter, and Jeffrey parameters, limiting cases are obtained and discussed.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2022/2799773
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2022:y:2022:i:1:n:2799773
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().