SQLite Encryption Method for Embedded Databases Based on Chaos Algorithm
Junlong Shi
Journal of Applied Mathematics, 2023, vol. 2023, issue 1
Abstract:
With the widespread use of embedded systems, chaos is a nonlinear system with certainty and complexity. It is an important topic in the field of information security at present, and it is an effective way to apply to embedded systems. It has great practical value in theory and in practice. This research mainly focuses on the encryption technology of SQLite embedded database and proposes an improved sparrow algorithm (Logistic Chaos Sparrow Search Algorithm, LCSSA) based on Logistic Chaos Map. It shows that the security level of SQLite in web development is higher than that of conventional Access. The population is initialized by the logistic chaotic mapping method, which improves the quality of the initial solution, increases the diversity of the population, and reduces the risk of premature maturity of the algorithm. The initial value y0 determines the encryption method of the nonlinear function. Taking the integer variable (int) as an example, the value range is ‐231~231. It can be seen that the key space is sufficient to prevent various conventional attacks. When the key is the wrong key, decryption will not yield any data. It can be found that encryption and decryption are very sensitive to the key, which is also determined by the sensitivity of chaotic encryption system to the initial value. The benchmark function compares the performance of the improved algorithm with the algorithm before the improvement and compares it with the SSA. The LCSSA has better convergence performance, higher accuracy, and better stability.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1155/2023/5187602
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jnljam:v:2023:y:2023:i:1:n:5187602
Access Statistics for this article
More articles in Journal of Applied Mathematics from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().