On some sequencing problems
Wlodzimierz Szwarc
Naval Research Logistics Quarterly, 1968, vol. 15, issue 2, 127-155
Abstract:
The (mxn) sequencing problem may be characterized as follows: There are m machines which can produce a piece consisting of n parts. Each part has a determined order in which it is processed through the machines. It is assumed that each machine cannot deal with more than one part at a time and that the processing required for each part can be accomplished only on one machine. That is, the machines are all specialized so that alternate machines for the same processing on a part is not possible. The problem is to find the best production plan consisting in sequencing the different parts so as to make the whole amount of time from the beginning of work till the piece is completed the shortest possible. Such a plan is called an optimum one. In the first 4 sections of this paper, the problem (2xn) is solved for the (2xn) case in which the order in which parts come on the machine is not constrained by further assumptions. The remainder of the paper then takes up: 1) the (3xn) problem of Bellman‐Johnson (viz. the technological processing order through the machine is the same for all parts) for several new special cases; 2) the 2xn problem of sequencing when delay times must also be considered; and, 3) some properties of an approximating method for solving (mxn) problems, including a delineation of cases when the approximating method will yield optimal solutions.
Date: 1968
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/nav.3800150202
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navlog:v:15:y:1968:i:2:p:127-155
Access Statistics for this article
More articles in Naval Research Logistics Quarterly from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().