The hnbue and hnwue classes of life distributions
Bengt Klefsjö
Naval Research Logistics Quarterly, 1982, vol. 29, issue 2, 331-344
Abstract:
Different properties of the HNBUE (HNWUE) class of life distributions (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx\, \le \,(\ge)\,\mu }\]$\end{document} exp(−t/μ) for t ≥ 0, where μ = \documentclass{article}\pagestyle{empty}\begin{document}$\int_t^\infty {\,\,\,\mathop F\limits^-(x)\,dx}$\end{document} are presented. For instance we characterize the HNBUE (HNWUE) property by using the Laplace transform and present some bounds on the survival function of a HNBUE (HNWUE) life distribution. We also examine whether the HNBUE (HNWUE) property is preserved under the reliability operations (i) formation of coherent structure, (ii) convolution and (iii) mixture. The class of distributions with the discrete HNBUE (discrete HNWUE) property (i.e.), for which \documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=k}^\infty {\mathop{\mathop P\limits^-_{j\,\,\,}\, \le(\ge)\,\mu(1 - 1/\mu)^{^k }}\limits^{}} $\end{document} for k = 0, 1, 2, ⃛, where μ =\documentclass{article}\pagestyle{empty}\begin{document}$\sum\limits_{j=0}^\infty {\mathop {\mathop P\limits^- _{j\,\,\,\,\,}and\mathop P\limits^ - _{j\,\,\,\,\,}=}\limits^{}}\,\,\sum\limits_{k=j+1}^\infty {P_k)}$\end{document} is also studied.
Date: 1982
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/nav.3800290213
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navlog:v:29:y:1982:i:2:p:331-344
Access Statistics for this article
More articles in Naval Research Logistics Quarterly from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().