EconPapers    
Economics at your fingertips  
 

Statistical analysis of very high‐dimensional data sets of hierarchically structured binary variables with missing data: An application to marine corps readiness evaluations

S. Zacks, W. H. Marlow and S. S. Brier

Naval Research Logistics Quarterly, 1985, vol. 32, issue 3, 467-490

Abstract: The present analysis deals with very high‐dimensional data sets, each one containing close to 900 binary variables. Each data set corresponds to an evaluation of one complex system. These data sets are characterized by large portions of missing data where, moreover, the unobserved variables are not the same in different evaluations. Thus, the problems which confront the statistical analysis are those of multivariate binary data analysis, where the number of variables is much larger than the sample size and in which missing data varies with the sample elements. The variables, however, are hierarchically structured and the problem of clustering variables to groups does not exist in the present study. In order to motivate the statistical problem under consideration, the Marine Corps Combat Readiness Evaluation System (MCCRES) is described for infantry battalions and then used for exposition. The present article provides a statistical model for data from MCCRES and develops estimation and prediction procedures which utilize the dependence structure. The E‐M algorithm is applied to obtain maximum‐likelihood estimates of the parameters of interest. Numerical examples illustrate the proposed methods.

Date: 1985
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/nav.3800320310

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navlog:v:32:y:1985:i:3:p:467-490

Access Statistics for this article

More articles in Naval Research Logistics Quarterly from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navlog:v:32:y:1985:i:3:p:467-490