EconPapers    
Economics at your fingertips  
 

Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties

X. Cai and F. S. Tu

Naval Research Logistics (NRL), 1996, vol. 43, issue 8, 1127-1146

Abstract: We examine the problem of scheduling n jobs with a common due date on a single machine. The processing time of each job is a random variable, which follows an arbitrary distribution with a known mean and a known variance. The machine is not reliable; it is subject to stochastic breakdowns. The objective is to minimize the expected sum of squared deviations of job completion times from the due date. Two versions of the problem are addressed. In the first one the due date is a given constant, whereas in the second one the due date is a decision variable. In each case, a general form of the deterministic equivalent of the stochastic scheduling problem is obtained when the counting process related to the machine uptime distribution is a generalized Poisson process. A sufficient condition is derived under which optimal sequences are V‐shaped with respect to mean processing times. Other characterizations of optimal solutions are also established. Based on the optimality properties, algorithms with pseudopolynomial time complexity are proposed to solve both versions of the problem. © 1996 John Wiley & Sons, Inc.

Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/(SICI)1520-6750(199612)43:83.0.CO;2-G

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:43:y:1996:i:8:p:1127-1146

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:43:y:1996:i:8:p:1127-1146