EconPapers    
Economics at your fingertips  
 

Response surface analysis of two‐stage stochastic linear programming with recourse

T. Glenn Bailey, Paul A. Jensen and David P. Morton

Naval Research Logistics (NRL), 1999, vol. 46, issue 7, 753-776

Abstract: We apply the techniques of response surface methodology (RSM) to approximate the objective function of a two‐stage stochastic linear program with recourse. In particular, the objective function is estimated, in the region of optimality, by a quadratic function of the first‐stage decision variables. The resulting response surface can provide valuable modeling insight, such as directions of minimum and maximum sensitivity to changes in the first‐stage variables. Latin hypercube (LH) sampling is applied to reduce the variance of the recourse function point estimates that are used to construct the response surface. Empirical results show the value of the LH method by comparing it with strategies based on independent random numbers, common random numbers, and the Schruben‐Margolin assignment rule. In addition, variance reduction with LH sampling can be guaranteed for an important class of two‐stage problems which includes the classical capacity expansion model. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 753–776, 1999

Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-M

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:46:y:1999:i:7:p:753-776

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:46:y:1999:i:7:p:753-776