An approximate planning model for distributed computing networks
John S. Hollywood
Naval Research Logistics (NRL), 2005, vol. 52, issue 6, 590-605
Abstract:
We develop an approximate planning model for a distributed computing network in which a control system oversees the assignment of information flows and tasks to a pool of shared computers, and describe several optimization applications using the model. We assume that the computers are multithreaded, and have differing architectures leading to varying and inconsistent processing rates. The model is based on a discrete‐time, continuous flow model developed by Graves [Oper Res 34 (1986), 522–533] which provides the steady‐state moments of production and work‐in‐queue quantities. We make several extensions to Graves' model to represent distributed computing networks. First, we approximately model control rules that are nonlinear functions of the work‐in‐queue at multiple stations through a linearization approach. Second, we introduce an additional noise term on production and show its use in modeling the discretization of jobs. Third, we model groups of heterogeneous computers as aggregate, “virtual computing cells” that process multiple tasks simultaneously, using a judiciously selected control rule. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.20098
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:52:y:2005:i:6:p:590-605
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().