EconPapers    
Economics at your fingertips  
 

Non‐greedy heuristics and augmented neural networks for the open‐shop scheduling problem

Selcuk Colak and Anurag Agarwal

Naval Research Logistics (NRL), 2005, vol. 52, issue 7, 631-644

Abstract: In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.

Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/nav.20102

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:52:y:2005:i:7:p:631-644

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:52:y:2005:i:7:p:631-644