A general strategic capacity planning model under demand uncertainty
Woonghee Tim Huh,
Robin O. Roundy and
Metin Çakanyildirim
Naval Research Logistics (NRL), 2006, vol. 53, issue 2, 137-150
Abstract:
Capacity planning decisions affect a significant portion of future revenue. In equipment intensive industries, these decisions usually need to be made in the presence of both highly volatile demand and long capacity installation lead times. For a multiple product case, we present a continuous‐time capacity planning model that addresses problems of realistic size and complexity found in current practice. Each product requires specific operations that can be performed by one or more tool groups. We consider a number of capacity allocation policies. We allow tool retirements in addition to purchases because the stochastic demand forecast for each product can be decreasing. We present a cluster‐based heuristic algorithm that can incorporate both variance reduction techniques from the simulation literature and the principles of a generalized maximum flow algorithm from the network optimization literature. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1002/nav.20128
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:53:y:2006:i:2:p:137-150
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().