Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem
Richard J. Forrester,
Warren P. Adams and
Paul T. Hadavas
Naval Research Logistics (NRL), 2010, vol. 57, issue 1, 1-12
Abstract:
The reformulation‐linearization technique (RLT) is a methodology for constructing tight linear programming relaxations of mixed discrete problems. A key construct is the multiplication of “product factors” of the discrete variables with problem constraints to form polynomial restrictions, which are subsequently linearized. For special problem forms, the structure of these linearized constraints tends to suggest that certain classes may be more beneficial than others. We examine the usefulness of subsets of constraints for a family of 0–1 quadratic multidimensional knapsack programs and perform extensive computational tests on a classical special case known as the 0–1 quadratic knapsack problem. We consider RLT forms both with and without these inequalities, and their comparisons with linearizations derived from published methods. Interestingly, the computational results depend in part upon the commercial software used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.20364
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:57:y:2010:i:1:p:1-12
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().