Base‐stock policies in capacitated assembly systems: Convexity properties
Woonghee Tim Huh and
Ganesh Janakiraman
Naval Research Logistics (NRL), 2010, vol. 57, issue 2, 109-118
Abstract:
We study an assembly system with a single finished product managed using an echelon base‐stock or order‐up‐to policy. Some or all operations have capacity constraints. Excess demand is either backordered in every period or lost in every period. We show that the shortage penalty cost over any horizon is jointly convex with respect to the base‐stock levels and capacity levels. When the holding costs are also included in the objective function, we show that the cost function can be written as a sum of a convex function and a concave function. Throughout the article, we discuss algorithmic implications of our results for making optimal inventory and capacity decisions in such systems.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.20386
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:57:y:2010:i:2:p:109-118
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().