EconPapers    
Economics at your fingertips  
 

Adaptive random search for continuous simulation optimization

Sigrún Andradóttir and Andrei A. Prudius

Naval Research Logistics (NRL), 2010, vol. 57, issue 6, 583-604

Abstract: We present, analyze, and compare three random search methods for solving stochastic optimization problems with uncountable feasible regions. Our adaptive search with resampling (ASR) approach is a framework for designing provably convergent algorithms that are adaptive and may consequently involve local search. The deterministic and stochastic shrinking ball (DSB and SSB) approaches are also convergent, but they are based on pure random search with the only difference being the estimator of the optimal solution [the DSB method was originally proposed and analyzed by Baumert and Smith]. The three methods use different techniques to reduce the effects of noise in the estimated objective function values. Our ASR method achieves this goal through resampling of already sampled points, whereas the DSB and SSB approaches address it by averaging observations in balls that shrink with time. We present conditions under which the three methods are convergent, both in probability and almost surely, and provide a limited computational study aimed at comparing the methods. Although further investigation is needed, our numerical results suggest that the ASR approach is promising, especially for difficult problems where the probability of identifying good solutions using pure random search is small. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/nav.20422

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:57:y:2010:i:6:p:583-604

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:57:y:2010:i:6:p:583-604