EconPapers    
Economics at your fingertips  
 

The reset disambiguation policy for navigating stochastic obstacle fields

Vural Aksakalli, Donniell E. Fishkind, Carey E. Priebe and Xugang Ye

Naval Research Logistics (NRL), 2011, vol. 58, issue 4, 389-399

Abstract: The problem we consider is a stochastic shortest path problem in the presence of a dynamic learning capability. Specifically, a spatial arrangement of possible obstacles needs to be traversed as swiftly as possible, and the status of the obstacles may be disambiguated (at a cost) en route. No efficiently computable optimal policy is known, and many similar problems have been proven intractable. In this article, we adapt a policy which is optimal for a related problem and prove that this policy is indeed also optimal for a restricted class of instances of our problem. Otherwise, this policy is generally suboptimal but, nonetheless, it is both effective and efficiently computable. Examples/simulations are provided in a mine countermeasures application. Of central use is the Tangent Arc Graph, a polynomially sized topological superimposition of exponentially many visibility graphs. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/nav.20454

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:58:y:2011:i:4:p:389-399

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:58:y:2011:i:4:p:389-399