A spatial rank‐based multivariate EWMA control chart
Changliang Zou,
Zhaojun Wang and
Fugee Tsung
Naval Research Logistics (NRL), 2012, vol. 59, issue 2, 91-110
Abstract:
Nonparametric control charts are useful in statistical process control when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate self‐starting methodology for monitoring location parameters. It is based on adapting the multivariate spatial rank to on‐line sequential monitoring. The weighted version of the rank‐based test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control scheme. It is robust to non‐normally distributed data, easy to construct, fast to compute and also very efficient in detecting multivariate process shifts, especially small or moderate shifts which occur when the process distribution is heavy‐tailed or skewed. As it avoids the need for a lengthy data‐gathering step before charting and it does not require knowledge of the underlying distribution, the proposed control chart is particularly useful in start‐up or short‐run situations. A real‐data example from white wine production processes shows that it performs quite well. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 91–110, 2012
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/nav.21475
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:59:y:2012:i:2:p:91-110
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().