Optimal control of noncollaborative servers in two‐stage tandem queueing systems
Dimitrios G. Pandelis
Naval Research Logistics (NRL), 2014, vol. 61, issue 6, 435-446
Abstract:
We consider two‐stage tandem queueing systems with dedicated servers in each station and a flexible server that is trained to serve both stations. We assume no arrivals, exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming a noncollaborative work discipline with idling and preemptions allowed. For larger holding costs in the first station, we show that (i) nonidling policies are optimal and (ii) if the flexible server is not faster than the dedicated servers, the optimal server allocation strategy has a threshold‐type structure. For all other cases, we provide numerical results that support the optimality of threshold‐type policies. Our numerical experiments also indicate that when the flexible server is faster than the dedicated server of the second station, the optimal policy may have counterintuitive properties, which is not the case when a collaborative service discipline is assumed. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 435–446, 2014
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/nav.21594
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:61:y:2014:i:6:p:435-446
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().