Layers of Experiments with Adaptive Combined Design
Sungil Kim,
Heeyoung Kim,
Jye‐Chyi Lu,
Michael J. Casciato,
Martha A. Grover,
Dennis W. Hess,
Richard W. Lu and
Xin Wang
Naval Research Logistics (NRL), 2015, vol. 62, issue 2, 127-142
Abstract:
In the field of nanofabrication, engineers often face unique challenges in resource‐limited experimental budgets, the sensitive nature of process behavior with respect to controllable variables, and highly demanding tolerance requirements. To effectively overcome these challenges, this article proposes a methodology for a sequential design of experiments through batches of experimental runs, aptly named Layers of Experiments with Adaptive Combined Design (LoE/ACD). In higher layers, where process behavior is less understood, experimental regions cover more design space and data points are more spread out. In lower layers, experimental regions are more focused to improve understanding of process sensitivities in a local, data‐rich environment. The experimental design is a combination of a space‐filling and an optimal design with a tuning parameter that is dependent on the amount of information accumulated over the various layers. The proposed LoE/ACD method is applied to optimize a carbon dioxide (epet‐CO2) assisted deposition process for fabricating silver nanoparticles with pressure and temperature variables. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 127–142, 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.21618
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:62:y:2015:i:2:p:127-142
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().