Bayesian sampling plans for exponential distributions with interval censored samples
Lee‐Shen Chen,
Ming‐Chung Yang and
TaChen Liang
Naval Research Logistics (NRL), 2015, vol. 62, issue 7, 604-616
Abstract:
This article studies the problem of designing Bayesian sampling plans (BSP) with interval censored samples. First, an algorithm for deriving the conventional BSP is proposed. The BSP is shown to possess some monotonicity. Based on the BSP and using the property of monotonicity, a new sampling plan modified by the curtailment procedure is proposed. The resulting curtailed Bayesian sampling plan (CBSP) can reduce the duration time of life test experiment, and it is optimal in the sense that its associated Bayes risk is smaller than the Bayes risk of the BSP if the cost of the duration time of life test experiment is considered. A numerical example to compute the Bayes risks of BSP and CBSP and related quantities is given. Also, a Monte Carlo simulation study is performed to illustrate the performance of the CBSP compared with the BSP. The simulation results demonstrate that our proposed CBSP has better performance because it has smaller risk. The CBSP is recommended. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 604–616, 2015
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/nav.21668
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:62:y:2015:i:7:p:604-616
Access Statistics for this article
More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().