EconPapers    
Economics at your fingertips  
 

Exact analysis of (R, s, S) inventory control systems with lost sales and zero lead time

Nazanin Esmaili, Bryan A. Norman and Jayant Rajgopal

Naval Research Logistics (NRL), 2019, vol. 66, issue 2, 123-132

Abstract: We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/nav.21833

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:navres:v:66:y:2019:i:2:p:123-132

Access Statistics for this article

More articles in Naval Research Logistics (NRL) from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:navres:v:66:y:2019:i:2:p:123-132