Managing system obsolescence via multicriteria decision making
Oluwatomi Adetunji,
John Bischoff and
Christopher J. Willy
Systems Engineering, 2018, vol. 21, issue 4, 307-321
Abstract:
Obsolescence occurs when system elements become outdated, and it leads to operational, logistical, reliability, and cost implications. In the U.S. military, this problem is a result of the U.S. Department of Defense's (DoD) departure from Military Specification (MILSPEC) standards in 1994 and transition to the use of Commercial Off the Shelf products. Obsolescence costs the DoD more than $750 million annually. The current risk management tools for obsolescence are based on a quantitative approach that uses cost optimization, and expert judgment is not used as a critical criterion. A review of the literature has revealed that during the design phase of technological systems, there is limited knowledge and a lack of training associated with mitigating obsolescence, and multicriteria decision‐making (MCDM) methods are not currently used to mitigate the risk of obsolescence. Thus, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS, which is a MCDM method) and Monte Carlo simulations are proposed as the foundation for this work. This paper adds to the methodology by introducing an expert judgment criterion. A case study was conducted using military and civilian experts. Expert validation showed that the TOPSIS model successfully identified the best system for mitigating obsolescence. This model can be used by system designers and other decision makers to conduct trade studies in obsolescence management.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1002/sys.21436
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:syseng:v:21:y:2018:i:4:p:307-321
Access Statistics for this article
More articles in Systems Engineering from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().