A FORMAL THEORY OF EARLY COGNITION DEVELOPMENT
Takeshi Okadome
Additional contact information
Takeshi Okadome: NTT Laboratories, Kehanna Science City, Kyoto 619-0237, Japan
Advances in Complex Systems (ACS), 2005, vol. 08, issue 02n03, 229-260
Abstract:
The formal theory of the development of early perception and motor control presented here deals with cognitive development as a mapping from a finite set of given experiences to a set of perceptual and motor-control functions. The theory involves seven constraints that uniquely define the mapping. The compatibility with observational phenomena and sufficiency of these constraints shows the validity of the theory. The principle underlying these constraints is a coding by the most efficient representation of information. The efficiency of representation is evaluated by the coding redundancy of given experiences defined as the number of real numbers that characterize experiences plus the size of the minimum continuous decoding function. The coding redundancy of experiences by the most efficient representation corresponds to the Kolmogorov complexity of the experiences. The mapping accounts for the dependence on neonatal experience of the development of perceptual and motor-control functions. This theory of development can also be seen as a metatheory of cognition that presents us a unified view of the diversity of perceptual and motor-control modules.
Keywords: Kolmogorov complexity; computational theory; cognition development; constraints; motor control; perception (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219525905000488
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:acsxxx:v:08:y:2005:i:02n03:n:s0219525905000488
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219525905000488
Access Statistics for this article
Advances in Complex Systems (ACS) is currently edited by Frank Schweitzer
More articles in Advances in Complex Systems (ACS) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().