IDENTIFYING NEURAL NETWORK TOPOLOGIES THAT FOSTER DYNAMICAL COMPLEXITY
Larry S. Yaeger ()
Additional contact information
Larry S. Yaeger: Informatics, Indiana University, 919 E. 10th St., Bloomington, IN 47408, United States;
Advances in Complex Systems (ACS), 2013, vol. 16, issue 02n03, 1-27
Abstract:
We use an ecosystem simulator capable of evolving arbitrary neural network topologies to explore the relationship between an information theoretic measure of the complexity of neural dynamics and several graph theoretical metrics calculated for the underlying network topologies. Evolutionary trends confirm and extend previous results demonstrating an evolutionary selection for complexity and small-world network properties during periods of behavioral adaptation. The resultant mapping of the space of network topologies occupied by the most complex networks yields new insights into the relationship between network structure and function. The highest complexity networks are found within limited numerical ranges of clustering coefficient, characteristic path length, small-world index, and global efficiency. The widths of these ranges vary from quite narrow to modest, and provide a guide to the most productive regions of the space of neural topologies in which to search for complexity. Our demonstration that evolution selects for complex dynamics and small-world networks helps explain biological evidence for these trends and provides evidence for selection of these characteristics based purely on network function—with no physical constraints on network structure—thus suggesting that functional and structural evolutionary pressures cooperate to produce brains optimized for adaptation to a complex, variable world.
Keywords: Complexity; neural networks; information theory; graph theory; evolution; self-organization (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S021952591350032X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:acsxxx:v:16:y:2013:i:02n03:n:s021952591350032x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S021952591350032X
Access Statistics for this article
Advances in Complex Systems (ACS) is currently edited by Frank Schweitzer
More articles in Advances in Complex Systems (ACS) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().