MARKET FLUCTUATIONS EXPLAINED BY DIVIDENDS AND INVESTOR NETWORKS
Matthew Oldham ()
Additional contact information
Matthew Oldham: Department of Computational and Data Sciences, 4400 University Drive, Fairfax, Virginia 22030, USA
Advances in Complex Systems (ACS), 2017, vol. 20, issue 08, 1-28
Abstract:
The inability of investors and academics to consistently predict, and understand the behavior of financial markets has forced the search for alternative analytical frameworks. Analyzing financial markets as complex systems is a framework that has demonstrated great promises, with the use of agent-based models (ABMs) and the inclusion of network science playing an important role in increasing the relevance of the framework. Using an artificial stock market created via an ABM, this paper provides a significant insight into the mechanisms that drive the returns in financial markets, including periods of elevated prices and excess volatility. The paper demonstrates that the network topology that investors form and the dividend policy of firms significantly affect the behavior of the market. However, if investors have a bias to following their neighbors then the topology becomes redundant. By successfully addressing these issues this paper helps refine and shape a variety of additional research tasks for the use of ABMs in uncovering the dynamics of financial markets.
Keywords: Agent-based model; artificial stock market; networks; dividend policy (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0219525917500072
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:acsxxx:v:20:y:2017:i:08:n:s0219525917500072
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0219525917500072
Access Statistics for this article
Advances in Complex Systems (ACS) is currently edited by Frank Schweitzer
More articles in Advances in Complex Systems (ACS) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().