LUCK OF OUTCOME IN THE TALENT VERSUS LUCK MODEL
Hiroshi Hamada ()
Additional contact information
Hiroshi Hamada: Department of Behavioral Science, Graduate School of Arts and Letters, Tohoku University, 27-1 Kawauchi Aoba-ku Sendai 980-8556, Japan
Advances in Complex Systems (ACS), 2023, vol. 26, issue 04n05, 1-17
Abstract:
This paper analyzes the Talent versus Luck model, which examines the impact of talent and luck on an individual’s career success. The original simulation-based model demonstrated that the distribution of capital has a heavy tail, and the most successful individuals are not necessarily the most talented. While the implications of the original model are intriguing, those findings were based solely on numerical calculations, and it was unclear how generally valid they are. Challet et al. generalize the original model using an analytical approach and successfully clarify the relationship between talent, lucky events, and capital when talent is constant and follows a uniform distribution. We reformulate a simplified model and derive more general propositions about the relationship between luck and talent in individual success by introducing the new concept of luck of outcome in addition to the luck of opportunity in previous models. We show that the capital distribution generated from a simplified talent versus luck model follows a lognormal distribution even when the talent is subject to a normal distribution. Moreover, we specify the relationship between the inequality of the distribution, which is indicated by the Gini coefficient, and the parameters of talent distribution.
Keywords: Talent; luck; income distribution (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S021952592350008X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:acsxxx:v:26:y:2023:i:04n05:n:s021952592350008x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S021952592350008X
Access Statistics for this article
Advances in Complex Systems (ACS) is currently edited by Frank Schweitzer
More articles in Advances in Complex Systems (ACS) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().