Parallel Simultaneous Perturbation Optimization
Atiye Alaeddini and
Daniel J. Klein ()
Additional contact information
Atiye Alaeddini: Institute for Disease Modeling, Bellevue, Washington 98004, USA
Daniel J. Klein: Institute for Disease Modeling, Bellevue, Washington 98004, USA
Asia-Pacific Journal of Operational Research (APJOR), 2019, vol. 36, issue 03, 1-16
Abstract:
Stochastic computer simulations enable users to gain new insights into complex physical systems. Optimization is a common problem in this context: users seek to find model inputs that maximize the expected value of an objective function. The objective function, however, is time-intensive to evaluate, and cannot be directly measured. Instead, the stochastic nature of the model means that individual realizations are corrupted by noise. More formally, we consider the problem of optimizing the expected value of an expensive black-box function with continuously-differentiable mean, from which observations are corrupted by Gaussian noise. We present parallel simultaneous perturbation optimization (PSPO), which extends a well-known stochastic optimization algorithm, simultaneous perturbation stochastic approximation, in several important ways. Our modifications allow the algorithm to fully take advantage of parallel computing resources, like high-performance cloud computing. The resulting PSPO algorithm takes fewer time-consuming iterations to converge, automatically chooses the step size, and can vary the error tolerance by step. Theoretical results are supported by a numerical example.
Keywords: Stochastic optimization; parallel computing; second-order algorithm; simultaneous perturbation (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S021759591950009X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:apjorx:v:36:y:2019:i:03:n:s021759591950009x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S021759591950009X
Access Statistics for this article
Asia-Pacific Journal of Operational Research (APJOR) is currently edited by Gongyun Zhao
More articles in Asia-Pacific Journal of Operational Research (APJOR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().