Embedding Best-Worst Method into Data Envelopment Analysis
Yu Yu () and
Dariush Khezrimotlagh
Additional contact information
Yu Yu: School of Business, Nanjing Audit University, Nanjing, P. R. China
Dariush Khezrimotlagh: School of Science, Engineering and Technology, Pennsylvania State University, Harrisburg, USA
Asia-Pacific Journal of Operational Research (APJOR), 2024, vol. 41, issue 01, 1-19
Abstract:
In real-life applications, there generally exist Decision Makers (DMs) who have preferences over outputs and inputs. Choosing appropriate weights for different criteria by DMs often arises as a problem. The Best-Worst Method (BWM) in Multiple Criteria Decision-Making (MCDM) depends on very few pairwise comparisons and just needs DMs to identify the most desirable and the least desirable criteria. Unlike MCDM, Data Envelopment Analysis (DEA) does not generally assume a priority for an output (an input) over any other outputs (inputs). The link between DEA and MCDM can be introduced by considering Decision-Making Units (DMUs) as alternatives, outputs as criteria to be maximized, and inputs as criteria to be minimized. In this study, we propose a linear programming model to embed DEA and BWM appropriately. We first propose a modified BWM linear programming model to satisfy all conditions that DMs can assume. We then illustrate how a conventional DEA model can be developed to include the BWM conditions. From our approach, the MCDM problem to obtain the optimal weights of different criteria are measured. At the same time, the relative efficiency scores of DMUs corresponding to the MCDM criteria are also calculated. We provide the foundation of measuring the efficiency scores when most desirable and the least desirable inputs and outputs are known. To show the process of the proposed approach, a numerical example (including 17 DMUs with seven inputs and outputs) is also discussed.
Keywords: Data envelopment analysis; Best-Worst method; performance evaluation; multiple criteria decision-making; efficiency measurement (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0217595923500100
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:apjorx:v:41:y:2024:i:01:n:s0217595923500100
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0217595923500100
Access Statistics for this article
Asia-Pacific Journal of Operational Research (APJOR) is currently edited by Gongyun Zhao
More articles in Asia-Pacific Journal of Operational Research (APJOR) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().