EconPapers    
Economics at your fingertips  
 

FRACTAL LAKSHMANAN–PORSEZIAN–DANIEL MODEL WITH DIFFERENT FORMS OF NONLINEARITY AND ITS NOVEL SOLITON SOLUTIONS

Y. Khan ()
Additional contact information
Y. Khan: Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia

FRACTALS (fractals), 2021, vol. 29, issue 02, 1-13

Abstract: The nonlinear Schrödinger equation (NLSE) can well identify the development of waves in deep water and optical fibers towards the least-order approximation. This study addresses the Lakshmanan–Porsezian–Daniel (LPD) fractal model which emerges from the application of the Heisenberg spin chain and fiber optics. This paper analyzes three types of nonlinear rules, namely Kerr law, quadratic law, and parabolic law. The variational approach to the combination of the Ritz idea is used to discover the new optical soliton solutions for the LPD-equation. It poses the requisite novel conditions for ensuring the existence of valid solitons. Three- and two-dimensional configurations are demonstrated by choosing the correct values for the parameters. This study focused on the pioneering research boundaries of the LPD-equation and other associated nonlinear evolution models in the field of communications network technology and optical fiber.

Keywords: Variational Principle; Lakshmanan–Porsezian–Daniel Model (LPD); Bright and Dark Solitons; Fractal Calculus (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X21500328
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:29:y:2021:i:02:n:s0218348x21500328

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X21500328

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:29:y:2021:i:02:n:s0218348x21500328