EconPapers    
Economics at your fingertips  
 

A FRACTAL MODEL FOR APPARENT LIQUID PERMEABILITY OF DUAL WETTABILITY SHALE COUPLING BOUNDARY LAYER AND SLIP EFFECT

Fuyong Wang and Jiong Fu
Additional contact information
Fuyong Wang: Research Institute of Unconventional Petroleum, China University of Petroleum, Beijing 102249, P. R. China
Jiong Fu: Research Institute of Unconventional Petroleum, China University of Petroleum, Beijing 102249, P. R. China

FRACTALS (fractals), 2021, vol. 29, issue 04, 1-10

Abstract: The apparent liquid permeability (ALP) of shale is challenging to be characterized due to complex wettability and nanopore size distribution. The nanopores in organic matter of shale are usually hydrophobic and the nanopores in inorganic matter are hydrophilic. The flow behaviors in these two different nanopores are quite different, and accurately predicting the ALP of shale is difficult. This paper proposes a fractal model for predicting the ALP of shale with dual wettability. The nonflowing boundary layer effect of water in inorganic pores and the slip effect in organic pores are considered, and the equations for describing the flow rate in single organic pore and inorganic pore are derived, respectively. With the assumption of the fractal distributions of organic pores and inorganic pores in shale, the analytical expression for predicting the ALP of shale is derived, and the key parameters influencing shale ALP are analyzed with sensitivity study. The research results show that the nonflowing boundary layer can reduce the ALP of inorganic pores, but slip effect will increase the ALP of organic pores. ALP of inorganic pores is affected by the thickness of nonflowing boundary layer, which is determined by the displacement pressure gradient, fluid viscosity, and pore size distribution. ALP of inorganic pores is more affected by contact angle and pore size distribution.

Keywords: Shale; Permeability; Boundary Layer Effect; Slip Effect; Wettability; Fractal (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X21500882
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:29:y:2021:i:04:n:s0218348x21500882

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X21500882

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:29:y:2021:i:04:n:s0218348x21500882