EconPapers    
Economics at your fingertips  
 

FRACTAL MODEL OF POROUS FIN WITH TEMPERATURE-DEPENDENT HEAT GENERATION AND ITS NOVEL SOLUTION

Yasir Khan ()
Additional contact information
Yasir Khan: Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia

FRACTALS (fractals), 2021, vol. 29, issue 07, 1-10

Abstract: Porous fins with temperature-dependent internal heat generation are frequently used to improve performance in a wide range of heat transfer and porous media applications. Thermal analysis of the porous fin fractal model with temperature-dependent heat generation is generated using fractal derivatives and investigated analytically using a novel Maclaurin series method (MSM). Nonlinear temperature distribution in a porous longitudinal fin is produced by the MSM. The porous fin solution is demonstrated using the Sierpinski fractal, which is based on time-dependent heat generation. The effects of the convection parameter, porosity, internal heat production, and generation number parameter on the dimensionless temperature distribution are discussed. MSM results are graphically and tabularly compared to existing solution methods such as HPM, CM, CSCM, LWCM, and GWRM. A comparison study reveals that MSM is a very reliable, accurate, and effective addition in the field of differential equations.

Keywords: Maclaurin Series Method (MSM); Sierpinski Fractal; Heat Generation; Porous Fins; Fractal-Fractional Calculus; Thermal Analysis (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X21502248
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:29:y:2021:i:07:n:s0218348x21502248

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0218348X21502248

Access Statistics for this article

FRACTALS (fractals) is currently edited by Tara Taylor

More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:fracta:v:29:y:2021:i:07:n:s0218348x21502248