APPROXIMATE SOLUTION OF FORNBERG–WHITHAM EQUATION BY MODIFIED HOMOTOPY PERTURBATION METHOD UNDER NON-SINGULAR FRACTIONAL DERIVATIVE
Hussam Alrabaiah
Additional contact information
Hussam Alrabaiah: College of Engineering, Al Ain University, Al Ain, UAE2Mathematics Department, Tafila Technical University, Tafila, Jordan
FRACTALS (fractals), 2022, vol. 30, issue 01, 1-6
Abstract:
The basic idea of this paper is to investigate the approximate solution to a well-known Fornberg–Whitham equation of arbitrary order. We consider the stated problem under ABC fractional order derivative. The proposed derivative is non-local and contains non-singular kernel of Mittag-Leffler type. With the help of Modified Homotopy Perturbation Method (MHPM), we find approximate solution to the aforesaid equations. The required solution is computed in the form of infinite series. The method needs no discretization or collocation and easy to implement to compute the approximate solution that we intend. We also compare our results with that of the exact solution for the initial four terms approximate solution as well as with that computed by the Laplace decomposition method. We also plot the approximate solution of considered model through surface plots. For numerical illustration, we use Matlab throughout this work.
Keywords: Fractional Derivative; Fornberg–Whitham Equation; Non-Singular Kernel (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0218348X22400291
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:fracta:v:30:y:2022:i:01:n:s0218348x22400291
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0218348X22400291
Access Statistics for this article
FRACTALS (fractals) is currently edited by Tara Taylor
More articles in FRACTALS (fractals) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().